PDF on the Fly

Version 1.0a24

1.0
2.0

3.0

4.0

5.0

1100 [8 1o 110] o PUTTT TR UTT TR RPRPRTRP 3

BUIIAING the PDF ... e e e e e e e e e e e e e e eeeaenrannaa 4
2.1 PDF TOP LEVEI STIUCLUIE ...ttt e e e e e e e e s e e e e e e e e e e e aans 4
2.2 The Marking Of the PAge..........eeiiiiie e 5
2.3 The Current Point @nd PathScooiiiiiiiiiii e 8
2.4 (04 17'0] o] 1T TP PPPPPPPTRTRT 9
25 User Units and Coordinate SYSIEIMcoiiiiiiiiieiiiiiiee ettt siree e e 10
2.6 [0] O =T o] (1T S 10
Y= 10 0] o1 L e foT | =1 g o PR 10
3.1 The Simplest PDF (The “Hello WOrld!” Case).......c.couuviiieiiiiiiiieiiiiee e 11
3.2 0 = e = 12
3.3 REPEALEA GIMAS ... ettt e e e e e e e e bbbt e e et e e e e e e s e ab e e eee s 14
3.4 Save and Restore the GMA ENVIFONMENToiiiiiiiiiiiiiiieie e 16
3.5 I oIS T T a1 o] oS 17
3.6 BZIEK CUINVES ...ttt e e e e e e e s e s bbbttt e e e e e e e e e e st b b eeeeeeeas 22
3.7 Scaled and BoOXed TEXE SIHNGuveeeeiiiiiieeiiiiie et e e 24
3.8 Circles and CilrCUIAN ATCS.....ouueiiie ittt sttt e e s st e e s e snbb e e e s e nnnees 27
3.9 The TransformMation MaLFIX........cc..ueiieiieiie et e e e e 30
3.10 ClIPPING PAEN ... e s e e e 32
3.11 Text as CHPPING Patheiiiiccc e e e e e e s 35
3.12 Text BIOCKS and TeXt Parameters.........couu ittt 36
3.13 (070] (0] 6] o= 1ot T ST PP PP PPUPPPPPPUPPRP 39
The FuNnction ReferenCe LiSt........cccooiiiiiiiiiiieeee e 42
4.1 “FIE” IMEENOTS ...ttt e e e e e e s e bbb e e e e e e e e e as 42
4.2 “GraphiC” METNOUScooiiiiiii e e e e e 44
KNOWN PrOBIEMS ...ttt e e e e e e eaes 58

1.0 Introduction

This is documentation for the Portable Document Format Perl5 Library (PDF-PL), a Perl5
Library designed to assist in writing Perl5 programs that create Portable Document For-
mat (PDF) files as used by Adobe’s® Acrobat® products. The current distribution can be
found at http://www.ep.cs.nott.ac.uk/pdf-pl/. For a complete specification of PHesee
table Document Format Reference ManbglTim Bienz and Richard Cohn, published by
Addison-Wesley Publishing Company. Also check Adobe’s World Wide Web (WWW)
site for possible updates via: www.adobe.com.

Of course, a simple way to generate PDF files is by using almost any application program
and either printing through the print driver PDFWriter®, or by using the printer driver to
make a PostScript® file and then use the Acrobat Distiller® to create the PDF file. Making
a PDF file using a Perl5 program might be considered doing it the hard way, but if the
results of a WWW query are most suitably expressed as a PDF file generated on a WWW
server, then this library provides one way to do it “on-the-fly” today. Hopefully more high
level techniques will be forthcoming.

PDF was designed as an electronic document format that allows fast and efficient random
access to any page of the document. For example, when a document is displayed on a
screen, the user desires fast access to any page even if the document consists of hundreds
or even thousands of pages. PDF files are a little tricky to create because they contain
“objects” that are addressed by their byte offset within the file and which can be accessed
randomly, that is, without reading the file serially from front to back. This is accomplished
using a set of (fixed format) object reference tables at the end of the PDF document and by
packaging the entire document information into objects of various kinds: pages, dictionar-
ies, text streams, resources, and more (see the above referenced PDF Manual).

The PDF-PL is a library of functions for the generation of a PDF file and should suffice to
build an error free PDF file. The functions are all written in Perl5. Since it is intended that
the PDF builder should use these functions within his own Perl5 program, familiarity with
Perl5 is assumed. Familiarity with PDF is also assumed. The user of PDF-PL does not
need to know all the details of generating a complete and correct PDF file as the library
handles most of that. However, the user will have to understand the details of “page con-
tent” operators in PDF in order to put text and graphics onto the pages of the files.

This is a first version of this library and as such has limited function. Primarily it makes it
easy to make multiple page documents containing text and line art. Some elementary text
formatting features are provided by the library but for the most part the user has to write
Perl5 code to handle the detailed placement of text and graphics on the page. So far, this
PDF-PL does not support image placement on pages or functions that go beyond page
content like “links”, “bookmarks”, or “annotations.” Our informal plans call for support

for these PDF features to be added in a future release of this PDF-PL.

September 12, 1996 3

2.0 Building the PDF

We will simply explain how to generate correct PDF files by using appropriate examples,
simple ones first and then progressing to more complicated ones. Together with the list of
functions in thé=unction Reference Ligfiven later in these notes, the user should be able

to learn how to generate correct, i.e., error free PDF files. Incorrect use of the PDF-PL pro-
vided functions may result in an erroneous PDF without the builder being informed by the
PDF-PL of these errors. We recommend that the user test the results of Perl5 programs by
attempting to view the PDF files with, for example, the Acrobat Reader or Exchange. A
typical user might have this document, the PDF manual and a Perl5 manual all available
on the desktop.

2.1 PDF Top Level Structure
The PDF file consists of four basic consecutive building blocks:

. The header

. The body: a collection of PDF objects
. The cross reference section
. The trailer

If a PDF has been modified (for example by generating annotations by using the Adobe
Acrobat product) these four original blocks are followed by one or more triplets, one for
each updating session. Each triplet consists of the following three building blocks:

. The updated body portion
. The updated cross reference section
. The updated trailer

Note that the original portion of a PDF file (the first four blocks) will never actually be
changed. Only those sections which by the update have been modified are recreated and
saved in the triplet blocks following the original blocks. This is another of the typical
properties of the PDF file.

The current version of these notes describes only building an original PDF file, that is one
that has not been updated yet.

The body of a PDF file consists of a sequence of PDF objects. These objects are numbered
by the internal routines as they are created, but the sequence in which they are written to
the output file need not be in ascending order of the numbers or, for that matter, in any
order. The objects contain everything there is to know about the document. Header, cross
reference section and trailer are constructed by the library routines internally and written
to the output file. For this construction process the library routines make use of informa-
tion collected during the time the user generates the content of the objects in the body.

Using PDF-PL, a user written Perl5 program for generating a PDF file has the following
general form:

September 12, 1996 4

. Open the output file
. Generate the pages and their content
. Close the output file

Since PDF files are accessed randomly by objects, as one of the later sample Perl5 pro-
grams will illustrate, we can build the pages in any order. Generally the pages are written
to the file in the same order in which they are created by the Perl5 calls.

TheFunction Reference Li&tter in these notes lists the functions the user needs for build-
ing a simple PDF file. The functions are listed in alphabetical order.

2.2 The Marking of the Page

The purpose of page contents objects of a PDF file is to put marks (graphic or text) on
pages. This is done by suitable PDF-PL functions invoked betwbegiaGraphic and
endGraphic invocation. For lack of a better name we call the program area between these
begin/end functions the graphic marking areaGMA. The PDF-PL library functions
match the basic marking operators of PDF and this document gives the simple mapping
between the descriptions found in the PDF Manual and the appropriate Perl5 calls.

One significant difference should be noted. There is an optimization done for certain state
setting calls and redundant ones may be ignored by the PDF-PL and will not result in any
output in the PDF file. This could be quite confusing when the results of a particular Perl5

call don’t show up in the file. This will have been because the results would have been
redundant and leaving those operations out will not change the behavior of the resulting
PDF file. If the users would like to force the library to output the operators in any case,

certain functions that begin with “force” rather than “set” can be used.

While in the GMA (i.e. between corresponding beginGraphic and endGraphic function
invocations) the PDF builder invokes, on the one hand, environment changing functions
and, on the other hand, also uses functions which actually put marks on the page, i. e. posi-
tion text, draw lines and curves, etc. In thenction Reference List brief description is

given for all functions and their parameters are defined.

It must be noted here that invocation of a PDF-PL function never puts any marks any-
where on a page. The more correct phrasing is: it puts the appropriate information into the
PDF so that whenever this portion of the PDF is rendered on an output medium (say a
screen or paper) the intended marking occurs. Throughout these notes we will informally
use the shorthand wordirfgs printed,” “is drawn” or “is rendered” instead of always
saying“appropriate information is put into the PDF so that when rendered on an output
medium the intended effect is achieved”

While in the GMA the PDF builder invokes both graphic and &xtironment setting
functions and the graphic and temarkingoperations. However, the text marking opera-
tions must occur while in the text marking area (TMA) of the program. A TMA is defined
as the area in the program starting with lilbginText function and ending with thend-

Text function. SincébeginText andendText must be invoked within a GMA, the TMA is

September 12, 1996 5

a subarea of the GMA, i.e. entirely contained within it. It follows that graphic marking
function invocations must occur within the GMA but not within a TMA. Text marking
function invocations must occur only within a TMA. Graphic environment setting func-
tions must occur within the GMA. And they may also occur within a TMA (and propagate
outside of it when the TMA ends by amdText invocation). The same is true for text
environment setting functions.

Note that there are text marking functions in the PDF-PL which, in a matter of speaking,
contain an entire TMA within themselves. These are the text block printing funietidns
BlockLeft, textBlockRight, textBlockCenter andtextBlockOffset.

Many of the PDF-PL functions are primitives, i.e., they are implementations of one single
PDF operator. But these text block functions (as well as a few a others to be introduced
later) output a set of such primitive functions. When they are invoked, the PDF builder
must specify font name, font size and text leading as parameters. After their invocation the
specified text parameters remain active just as they would if set within a TMA. Other cur-
rently still active text environment setting functions apply, of course, also to the text ren-
dered by the text block functions.

These are the defaults for the environmental graphic and text variables at the start of a new
GMA:

. dash pattern [0], i.e., solid line

. fill color black

. flatness 0, i.e., the device default

. font name UNDEFINED

. font size UNDEFINED

. line cap style 0, i.e., butt end

. line width 1 user unit

. miter limit 10

. line join style 0, i.e., mitered

. stroke color black

. text character spacing 0

. text horizontal scale 100, i.e., 100%, no scaling
. text leading 0

. text rendering 0, i.e., fill the text with color
. text rise 0

. text word spacing 0

These are the defaults for the environmental graphic and text variables as they are valid at
the start of a new page:

. clipping path crop box
. crop box media box (page size)
. current point (0, 0), i.e., lower left page corner

September 12, 1996 6

The terms “fill color” and “stroke color” refer to the use of color for the operations of fill-
ing an area and stroking (i.e., drawing) a line. Filling refers to the filling with color of an
area encircled by a defined path. Stroking refers to drawing a line along a defined path.
Stroking is a term specifically defined for the PDF to mean drawing a line.

The following graphic and text related functions are grouped into graphic marking func-
tions, text marking functions and environment changing functions. The list also shows the
corresponding operators as they are used in the PDF. Functions without an operator (indi-
cated by “--") are unique to the PDF-PL and hence have no direct equivalent in the PDF.

Graphic environment changing functions are:

. setColors --
. setDashPattern d
. setFlatness i
. setJoinStyle]
. setLineCapStyle J
. setLinewidth w
. setMiterLimit M

The corresponding force functions also belong into this list. They are obtained by replac-
ing the prefix “set” with the prefix “force.” All functions in the list have a force function
which do exactly the same as the set functions except for the time when the function is
actually put into the PDF stream object.

The text environment changing functions are:

. setCharSpace Tc

. setFont Tf

. setTextHorizScale Tz

. setTextLeading TL, TD
. setTextRender Tr

. setTextRise Ts

. setTextWordSpace Tw

Again there are corresponding “force” functions for each function in this list. They are
obtained by replacing the prefix “set” with the prefix “force.”

Font and font size can also be changed by being specified as parametelsegfrifhiext
function (see the function description in fhenction Reference Lisand bysetFont

Although the PDF-PL is not a formatter there are environment setting functions for line
spacing (leading), word spacing, character spacing and super/subscripting (rise with posi-
tive or negative parameter value). The functsmiTextHorizScale sets a scale factor
which is horizontally applied to the text string before it is actually rendered on a screen or

September 12, 1996 7

printer. The functiorsetTextRender specifies how text is to be rendered, for example,
filled with color, stroked only, or stroked and filled, etc.

Functions for graphically marking the page while in the GMA are not listed here. They are
introduced in the next sectiofhe Current Point and Paths

Functions for marking the page with text while in the TMA are:

. textCenter
. textLeft
. textRight

The text block functions also mark the page with text but they are invoked within a GMA
(remember, you can look at it as if they carry their own TMAs with them).

. textBlockCenter
. textBlockLeft
. textBlockOffset

. textBlockRight

One might consideendText to be another function which belongs into this category.
Although it in itself is not contributing to marking the page, it gives rise to the actual put-
ting of text into the output file by the PDF-PL internal routines.

2.3 The Current Point and Paths

In the GMA one of the environment variables is the “current point.” The current point is
used to define a path. A path is a sequence of line segments (straight or Bezier curves). A
path can be stroked (i.e. drawn), filled (when closed) or both. The current point is valid
only outside a TMA, since graphic marking functions may not be invoked inside a TMA.

The kind of stroking is determined by the setting of the environment variables: line width,
dash pattern, miter limit, line cap style, line join style and stroke color. Stroking means
drawing a line along the path, such that the line is centered on the path.

A path is defined by using the current point changing functions (the letters are again the
corresponding PDF operator codes):

. closepath h
. curveto c
. endpath n
. lineto I

. moveto m
. rectangle re
. vCurveto v
. yCurveto y

September 12, 1996 8

Nothing is committed yet to the PDF file when they are invoked.

The functionmoveto moves the current point. The functidivgeto, curveto, vCurveto
andyCurveto append new Bezier curves (segments) to the current path, and leave the cur-
rent point at the end of the last segment. The functiciangle adds a rectangle to the
current path andlosepathends a path by appending a straight line from the current point
to the beginning of the path. The functiemdpath just ends a path without closing it.

These are the path committing functions:

. closepathFillStroke b
. evenOddFill f*
. evenOddFillStroke B*
. fill f

. fillStroke B
. stroke S

Now the defined path is committed to the PDF file, either as a filled path (fi the
evenOddFill functions), as a stroked path only (by #teke function) or as both filled
and stroked (by thilIStroke or evenOddFillStroke functions). Note that thelosepath-
FillStroke function does the same as fhkStroke function except it is preceded by clos-
ing the path as if thelosepathfunction were called first.

The occurrence of any of the stroking and/or filling operators “consumes” the path. The
path ceases to live. The only exception is the existence of a clipping fundiror(
eoclip) in the path definition. Even if the path has been consumed its ability to act as a
clipping path lives on. This ability disappears only by restoring an environment as it
existed before the clipping path was defined (sesaheandrestore functions in the sec-

tion The Function Reference L)st

Note that thdill, fillStroke andclosepathFillStroke functions fill the path using the non-
zero winding rule to determine which region to tlzenOddFill andevenOddFillStroke

fill the path using the even-odd rule to determine the filling region. For a detailed discus-
sion of these rules see the secfiath Painting Operatorgh the PDF Manual.

2.4 Clipping

In the PDF it is possible to specify more than one separate paths and designate one or
more of them to be clipping paths.

When a clipping path has been defined and another path is to be filled or stroked or both,
then only the intersection of clipping path and the fill/stroke path are actually filled/
stroked. For an sample program see the se€Clipping Path

The default clipping path on a page is the crop box (or its default, the media box, which is
the page size). Hence nothing need be done by the PDF builder as long as no clipping
effects are desired. In fact, this is the most desirable situation. The operation of clipping is

September 12, 1996 9

an expensive one. Therefore it is advisable always to deactivate an existing clipping path

once it is no longer needed. Even if the current clipping path does not effect any of the

paths currently to be filled its mere existence costs. It is good programming practice and

economic use of the available resources to use available environment saving and restoring
functions for saving and restoring the clipping path ¢faveandgrestore see the section

The Reference Function Ljist

A second definition of a clipping path is given by a string of text, or more precisely, the
outlines of the characters comprising the string of text. Current font and size parameters
etc., of course, apply. The characters of text strings are marked to act as clipping paths by
thesetTextRenderfunction. For a sample program see the sedigxt as Clipping Path

2.5 User Units and Coordinate System

Almost all parameters used in the functions of the PDF-PL specify linear dimensions, for
example, coordinates of a point on the page or width of lines to be drawn. They are to be
specified in user units. A user unit is 1/72nd of an inch which is very closely equal to one
printer's point. The origin of the user coordinate system on the page is the left lower cor-
ner. In the PDF user units are the default units. The actual length of a user unit may change
by transformations of the coordinate system.

By using thectm function it is possible to transform the coordinate system to suit a partic-
ular application. Possible transformations are the operations of translation, rotation and
scaling. After executing atm function, the length of a unit in either x or y may have
changed. The directions into which x and y point might have also.

In other words, if a PDF-PL function is invoked after some coordinate system transforma-
tion, which includes scaling in x-direction by a factor of 2, then a specified length of 3 user
units will on the page appear as a length of 6 points.

2.6 Error Checking

Error checking of user supplied data (parameters) as well as correct sequencing of user
supplied invocations of the PDF-PL functions is not guaranteed. In particular, the PDF
builder is responsible that the effect of positioning functions, as, for exammeto and

lineto, do not exceed the dimensions of the page.

3.0 Sample Programs

In this section sample programs will demonstrate the use of the functions of the PDF-PL.
The functions have all been tested and the code was inserted here into these notes directly
from the test library. However, adjustments had to be made to the program text, for exam-
ple, the name of the PDF-PL library was changed to a generic indicator after we used an
explicit name necessary to test the programs in our environment. Therefore accidental
errors cannot be ruled out.

September 12, 1996 10

Note that these sample programs also explicitly augment the definition of the functions in
The Function Reference LisThey are a vital part of this documentation.

3.1 The Simplest PDF (The “Hello World!” Case)

Traditionally, generating a salutation to the world is the start for learning a new program-
ming language or, as the case is here, beginning to use a new library of functions for gen-
erating documents. Here is a simple Perl5 program printing these classical words in 24
point Helvetica Bold on a default size page six inches up from the bottom and starting one
inch over from the left edge.

TSt EL.pl - Hello WOTIA! #HHHHHHHHHHEHHEHHHH
BEGIN {

$PDF_LIB = $ENV{“$PDF_LIB"};

unshift (@INC, $PDF_LIB);
}

use Pdf::File; #i#tH#H USE lines
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new(); ##### OPEN FILE lines
$pdf->pdfOpen ('./t1.pdf);

$pdf->newPage (); #HHH Page line
$g = $pdf->beginGraphic (); ##### BEGIN GRAPHIC line

#i#HH TEXT lines
$g->beginText ('Helvetica-Bold’, 24);
$g->textLeft (72, 432, “t1.pl: Hello World!™);
$g->endText ();

$g->endGraphic (); #HHH# END GRAPHIC line

$pdf->pdfClose (); ###H## CLOSE FILE line
HHHHHHHR AR E N D #HHHHHHR R R R

Note that in this and all following sample programs there is an empty parameter list used
for all invocations of subroutines which do not require parameters. Use is made of this
Perl5 option in order to improve readability of the program text.

The first executable line in the t1.pl sample program is a compile time statement of Perl5.
If the Pdf library is not installed in a standard search place, these lines cause the program
to look for the Pdf directory in the directory given by the PDF_LIB environment variable.

September 12, 1996 11

TheUSE lines are a notification to the Perl5 interpreter about which packages are going to
be needed and in which directory they can be found. In other words, the PDF-PL directory
specified in thdEGIN statement contains a directory named Pdf, which in turn contains
the PDF-PL module Files, Font and Graphic.

In the first of theDPEN FILE lines a local Perl5 variable ($pdf) containing a reference to
a new File object is defined. In the second line $pdf is used to open a user specified output
file.

In the PAGE line a new page (here the first) of the output PDF file is started. One such
function invocation is required for each new page.

With the BEGIN GRAPHIC line begins a new GMA. A reference to the new GMA is
returned and saved since it is now needed to qualify the functions to be used for putting
marks on the page.

The TEXT lines define a TMA within which one line of left adjusted text is put out. The
beginText function also provides specification of font name and font size.

TheEND GRAPHIC line ends the GMA.
The last line closes the output file.

It should be noted that the functions invoking the end of the GMA and the end of file are
required. No PDF-PL diagnostics will indicate their absence yet the generated erroneous
PDF will not be processed by Acrobat. In fact, running under Windows Acrobat caused
Windows to stall.

Note: There are two Perl5 objects used in this program sequence represented by the vari-
ables named $pdf and $g. The “page” createddwPageand the output file created by
pdfOpen are not materialized as Perl5 objects in the example but reside within the “file”
Perl5 object. Similarly, thbeginText does not make a Perl5 object but begins a text state
within the graphic object $g. In these notes we call this text state a TMA.

3.2 Two Pages

In the second sample program we will generate a PDF file with two pages and a mix of
graphic and text content.

W TEST2.pl - TWO PaQES HHHHHHHHHHHHH
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

September 12, 1996 12

my $pdf = Pdf::File->new();
$pdf->pdfOpen ("./t2.pdf);

$pdf->newPage (); #HHHH start of first page
$g = $pdf->beginGraphic ();
$g->beginText ('Helvetica’, 18);
$g->textLeft (72, 650,
“t2.pl: On this page text and graphics are drawn using the");
$g->textRight (540, 610,
“default environment (except for font and fontsize)!");

$g->endText ();

&strokeLine (120, 200, 370, 450);
&strokeLine (120, 250, 370, 500);

$g->rectangle (400, 300, 100, 100);
$g->fill ();

$g->endGraphic ();

$pdf->newPage (); #itH#H start of second page
$g = $pdf->beginGraphic ();

$g->setColors ('f, 'red’);

$g->beginText ('Helvetica-Bold’, 24);

$g->textLeft (120, 600, “t2.pl: Second Page! The Fun starts!”);

$g->endText ();

$g->setLinewidth (5);
$g->setColors ('s’, 'blue’);
$g->setColors ('f', 'yellow’);
$g->rectangle (250, 400, 100, 100);
$g->fillStroke ();

$g->setColors ('s’, 'green’);
&strokeLine (245, 200, 295, 275);

$g->setColors ('s’, 'darkblue’);
&strokeLine (305, 275, 355, 200);

$g->setColors ('s’, 'red’);
&strokelLine (247, 192, 353, 192);

September 12, 1996

13

$g->endGraphic ();

$pdf->pdfClose ();

sub strokeLine {
$g->moveto ($_[0], $_[1]);
$g->lineto ($_[2], $_[3]):
$g->stroke ();

}
BHHHHHHA AR E N D fHHHHH R R

Only those features of PDF-PL functions will now be described which were not already
mentioned in the previous example.

In the sample program t2.pl more than one line of text is generated within the first TMA
(beginText (‘Helvetica-Bold’, 18). Note that the first line is left adjusted, starting one inch
to the right of the page edge. The second line is right adjusted. Its right end is positioned
one inch to the left of the right edge of the page.

The drawing parameters default to those initially valid when a new GMA is started.

The lines following the TMA (two strokeLine lines) generate two straight lines having the
default width of one user unit and drawn with the default stroke color of black. Note: The
strokeLine function is an internal subroutine to this sample porgram. It produces a line on
a page by executing the PDF operators moveto, lineto and stroke. Consequences: The
current path is undefined i.e. consumed after strokeLine is executed.

The next two lines generate a square filled with the default fill color black. Note that the
square is only a consequence of the proper choice of the two defining points of the rectan-
gular box.

On the second page of the PDF after beginning the GMA a new current color (red) is
defined for all filling (‘f") operations. Filling includes the coloring of text. Hence the fol-
lowing text line is drawn in red.

Next the line width used by the drawing routines is set to five user units. Then the stroking
color is set to blue and the filling color changed to yellow. Then a two colored square is
drawn. It is to be stroked (‘s’) and filled (‘f’). Hence its five user units wide outline
appears in blue and its interior is filled with yellow.

The last figure consists of three differently colored lines.

3.3 Repeated GMAs

In the sample program t3.pl we want to show how the same GMA can be used repeatedly.
As an example we want to generate the same heading and footing text on all pages of a

September 12, 1996 14

document. Then we use additional functions to generate the variable text on the pages, the
page numbers.

i Test13.pl - Repeated GMAS HHHHHHHHHHEHHHHHHHY
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new(1);
$pdf->pdfOpen ('./t3.pdf);

$pdf->newPage (3); #HHHHE init. of third page
$pdf->newPage (1); #HHEE Init. of first page
$pdf->newPage (2); ###H### init. of second page

$g = $pdf->beginGraphic (1); ##### goes to page 1

$xc =4.25*72;
$yc =10* 72;

$g->beginText ('Helvetica’, 18);
$g->textCenter ($xc, $yc, “t3.pl: SampleHeading");

$yc =72;

$g->textCenter ($xc, $yc, “Sample Footin g”);
$g->endText ();

$g->endGraphic ();

$g->addGraphic (2); ##H#H## now added to page 2
$g->addGraphic (3); ##### now added to page 3

foreach $pn (1, 2, 3){ ##### add the page numbers
$g = $pdf->beginGraphic ($pn);
$g->beginText (Times-Roman’, 18);
$g->textCenter ($xc, 36, $pn);
$g->endText ();
$g->endGraphic ();

}

$pdf->pdfClose ();

September 12, 1996 15

RHARRHARAAAAAAAAAAAAR B N D HHHHHHHHHHHHHHHHHH

In the sample program t3.pl we first start three pages by three repeatedgefunction
invocations. Just for demonstration we use explicit page numbers and initialize these
pages not even in sequence. Between these page functions we would ordinarily find all the
content generating functions for the current page. If the page numbers were not specified
the pages would be automatically numbered sequentially starting with 1.

Then text strings for heading and footing of a page are generated within a GMA. We pass
the parameter 1 to theeginGraphic function. This attaches the generated text to page 1.

In the previous sample programs we usedbtbginGraphic function always without a
parameter. Then the contents generated were automatically attached to the most recently
initialized page.

Now we use two furthemddGraphic functions with page numbers 1 and 2 respectively,
as parameters for attaching the same text strings (the most recently ended GMA) to the
specified pages.

We now want to print the page numbers correctly on each of the pages. We use a foreach
statement for the loop. Within each pass through the loop another GMA is begun and
ended. By using the page number as parameter drethierGraphic function the gener-

ated content is attached to the correct page.

3.4 Save and Restore the GMA Environment
In the sample program t4.pl we show the usage ajsheeandgrestore functions.

#H### Test t4.pl -- Save/Restore Environment #####HHHHHHH
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfopen ('./t4.pdf);

$pdf->newPage (); #H#HH init. page
$g = $pdf->beginGraphic ();

$x=15*72;
Sy =9*72;

September 12, 1996 16

$g->beginText ('Helvetica’, 12);

$g->setColors ('f, 'red’);

$g->textLeft ($x, By, “t4.pl: First Environment (Helv. 12pt,
red)”);

$g->endText ();

$g->gsave ();
$y -= 50;

$g->beginText ('Times-Roman’, 24);

$g->setColors ('f, 'blue’);

$g->textLeft ($x, By, “Second Environment (Times 24pt, blue)”);
$g->endText ();

$y -= 50;
$g->grestore ();

$g->beginText ();
$g->textLeft ($x, $y, “First Environment again”);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
HHAHHHHHHH T E N D

In the t4.pl sample program we demonstrate saving and restoring of the text and graphic
environment. In each of three successive TMAs a line of text is generated. For the first line
18 point Helvetica and red fill color was chosen. The second line is printed in blue 24
point Times-Roman. After the first TMA the environment has been sggealq. After
completing the second text environment the first environment is restored grgstore).

Then a third text line is printed but without setting font or color. As the example demon-
strates the environment has been saved and the third line appears again in the color and
font of the first line.

3.5 Line Samples

In this example different line samples are demonstrated. Also the size of the page is

changed from the default size (which is 8 and a half by 11 inches) to 6 by 8 inches. On

each of the four pages another property of lines is demonstrated: line width, dash patterns,
line cap styles and miter styles.

15.pl -- Line Samples on smaller page size #####H#H#H#
BEGIN {
$PDF_LIB = $ENV{"$PDF_LIB"};

September 12, 1996 17

unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ("./t5.pdf);

change of default page size
$w=6*72;
$h=8*72;
$pdf->setPageSize ($w, $h);

$pdf->newPage (); #H### start of first page: varying lines
$g = $pdf->beginGraphic ();

$x = 120;
Sy = 470;

$g->beginText ('Helvetica-Bold’, 18);
$g->textLeft ($x, Sy, 't5.pl: Line Width examples’);
$g->endText ();

$x += 35;

$y -= 55;

$ll = 100;

$ld = 50;

$td = 115;

@Ilwa =(1,'3,'5, 10, '15’, '20', '25’);

foreach $lw (@Iwa) {
$g->setLinewidth (0+$lw);
strokeLine ($x, $y, $x+3$ll, $y);
$g->beginText (12);

$g->textLeft ($x+$td, $y-5, $lw);
$g->endText ();

$y -= $ld;
}

$g->endGraphic ();

$pdf->newPage (); #HHHHE start new page: dash patterns

September 12, 1996

18

$g = $pdf->beginGraphic ();

$y = 470;
$x = 120;

$g->beginText ("Helvetica-Bold’, 18);
$g->textLeft ($x, By, 't5.pl: Dashed Line Examples’);
$g->endText ();

$x -=5;
Py -= 55;
$Il = 200;
$lw = 4;
$ld = 50;
$td = 215;

$g->setLinewidth ($lw);

@da = ([4], [4], [4, 2], [3, 5], [2, 3], [6, 3, 2, 3]);
@pa=(0,4,0,3,0,9);

foreach $i (0..5) {
@a = @{$da[$i]};
$p = palil;
$g->setDashPattern (\@a, $p);
strokeLine ($x, Sy, $x+3$lI, $y);

$g->beginText (12);
$g->textLeft ($x+$td, $y-$lw/2, $p);
$g->endText ();

$y -= $ld;
h

$g->endGraphic ();
$pdf->newPage (); #HHH start new page: line cap styles
$g = $pdf->beginGraphic ();

Sy = 470;
$x =120;

$g->beginText ('Helvetica-Bold’, 18);
$g->textLeft ($x, $y-5, 't5.pl: Line Cap Examples’);
$g->endText ();

September 12, 1996

19

$x += 35;
Py -= 55;
$ll = 100;
$ld = 75;
$td = 115;

$g->setLinewidth (15);

foreach $cap (0, 1, 2) {
$g->setLineCapStyle ($cap);
strokeLine ($x, $y, $x+3$ll, $y);
$g->beginText (12);

$g->textLeft ($x+$td, $y-5, $cap);
$g->endText ();

$y -= $ld;
h

$g->endGraphic ();

$pdf->newPage (); #HHHH start new page: miter styles

$g = $pdf->beginGraphic ();

$x = $w/2;
$y = $h - 60;

$g->beginText ('Helvetica-Bold’, 18);

$g->textCenter ($x, 3y, 't5.pl: Miter Style Examples’);

$g->endText ();

$y -= 150;
$w = 50;
$h =100;
$x -= $w;
$ld = 150;
$td = 150;

$g->setLinewidth (15);
foreach $m (0, 1, 2) {
$g->setJoinStyle ($m);

$g->moveto ($x, $y):
$g->lineto ($x+$w, Sy+$h);

September 12, 1996

20

$g->lineto ($x+2*$w, $y);
$g->stroke ();

$g->beginText (12);
$g->textLeft ($x+$td, $y+$h/2, $m);
$g->endText ();

$y -= $Id;
|3

$g->endGraphic ();

$pdf->pdfClose ();

sub strokeLine {
$g->moveto ($_[0], $_[1]);
$g->lineto ($_[2], $_[3]);
$g->stroke ();

}
BHHHHHHA AR E N D #HHHHHH R R

Before anything is done in the fifth sample program, t5.pl, the default page size is changed
to six inches in width and 8 inches in height usingseéi®ageSizéunction.

Text font name and font size must be defined before any text can be put on the page within
a new GMA. This is done with tHeeginText function at the beginning of the first TMA of
this page.

Within a GMA, once defined, the font parameters propagate into each new TMA as long
as it is contained within the same GMA. Hence in our sample program only the first occur-
rence of aeginText function within a GMA shows two parameters: here Helvetica-Bold
and 18 points. Repeated use dieginText function within the same GMA shows only

the changed parameter: here 12 points.

For Perl5 novices: here is a common trick to overcome problems often arising from the
easy (and therefore often careless) use of different data types in Perl5. The program shows
$lw to be of string type because of the string assignment from the string array (@Iwa) in
the foreach statement. So it is used and needed taxtheeft function of the fourth state-

ment in the loop body. In the first loop statement, howesatdt,inewidth calls for a
numerical parameter. If we used $lw only, getLinewidth function answers with an

error message, saying that it expects a number and not a string. Using 0+$lw lets Perl5
convert the string into a number without changing its value ansethénewidth routine

is happy.

The dashed line example on the second page shall serve to explain the details of the usage
of the two parameters of treetDashPatternfunction. The first parameter must be an
array (actually the reference to an array, denoted here by the reverse slash, ‘).

September 12, 1996 21

For the first line the array consists only of one element: the number four. In the definition
of the array of arrays, @pa, just before the foreach loop, the first element is a one-element
array). The single element means that the dashed line consists of equal long dashes and
gaps, each of them being four user units long. The second line is similar to the first except
that the line does not start with a dash but with a gap (see below).

The third element of the @da array is an array with two elements: [4, 2]. Now, the dashes
are four user units long and the gaps two. The fourth and fifth lines have similar dash pat-
terns, only the lengths are different.

The sixth array, [6, 3, 2, 3], defines a dash pattern of a six unit dash, followed by a three
unit gap, followed by a two unit dash, followed by a three unit gap, before it repeats itself.
As you might guess: an odd number of elements defines a pattern where the last gap has
the same length as the last defined dash.

It remains to explain the second parameter, also called phasesefashPatternfunc-
tion. This parameter is a length value measured in user units. It defines where in the pat-
tern the drawing shall be started, before the repetition sets in.

In the first line the phase is zero. The pattern starts at the beginning of the path with the
dash defined by the first element of the defining array: four user units long. Now you see
the difference between the first and the second lines. In the first line the drawing starts
with the dash, in the second line the pattern starts as far advanced in the defined pattern as
the phase specifies, here exactly with a gap. (NOTE: This is probably not what you see
when you try this example. You have run across an Acrobat bug. You see the line identical
to the first one, i.e. as if the phase were not 4 but 0. But the PDF-PL generates a correct
PDF operator and parameters.) The last line with a phase of nine starts with the second
dash in the pattern, a dash with a length of two user units.

The third page shows nothing new, but serves to demonstrate the line cap style function.

On the fourth page we use the defining of a path for the first time. We draw two lines in
each loop and demonstrate the available styles of joining them. There are three functions
defining the pathmoveto followed by twolineto functions. This defines a path starting

with the parameter point of tieoveto function and ends with the parameter point of the
secondlineto function. It ends simply by thstroke function which actually does the
drawing (stroking) of the path according to the current environment. This environment
consists mostly of the defaults: 15 user units line with, default cap style (butt end), default
join style mitered), default dash pattern (solid line) and default color (black).

3.6 Bezier Curves

In the sample program t6.pl we demonstrate the use of the curveto function which gener-
ates a Bezier curve. This is the way to draw any shape curve in PDF.

HHHH .| - Bezier CUIVES i
BEGIN {
$PDF_LIB = $ENV{"$PDF_LIB"};

September 12, 1996 22

unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ('./t6.pdf);

$pdf->newPage ();
$g = $pdf->beginGraphic ();
$xc=4.25*72;

$yc=9*72;
$g->beginText ('Helvetica-Bold’, 18);

$g->textCenter ($xc, $yc, 't6.pl: Bezier Curve Examples’);

$g->endText ();

$D = 250; ## width of curve sample

$dx = 50; ## init. x-diff of Curr.Pt. and P1
and of P2 and P3

$d = $D - 2*$dx; ## init. x-diff. of P1 and P2

$dy = 100; ## height of curve

$tdu = 12; ## upper vertical text adjustment

$tdl = 16; ## lower vertical text adjustment

$x = $xc - $dx - $d/2; ## x-coord. of current point
$y = $yc - 60 - $dy; ## y-coord. of init. current point

$x1 = $x + $dx; ## x-coord. of 1. control point

$x2 = $x1 + $d; ## x-coord. of 2. control point

$x3 = $x2 + $dx; ## x-coord. of end point

$yl = By + $dy; ## init. y-coord. of both ctrl pts

foreach $s (0, 25, 25) {

$x1 -= $s;
$x2 -= $s;

$g->setLinewidth (3);
$g->setColors ('s’, 'black’);

$g->moveto ($x, By);
$g->curveto ($x1, $y1, $x2, $y1, $x3, $y);
$g->stroke ();

September 12, 1996

23

$g->setLinewidth (1);
$g->setColors ('s’, 'red’);

$g->moveto ($x, $y);
$g->lineto ($x1, $yl);
$g->moveto ($x3, By);
$g->lineto ($x2, $y1);
$g->stroke;

$g->beginText ("Helvetica-Bold’, 12);
$g->textCenter ($x, $y-$tdl, 'Curr. Pt.");
$g->textCenter ($x1, $y1+$tdu, 'P1);
$g->textCenter ($x2, $yl+$tdu, 'P2%);
$g->textCenter ($x3, $y-$tdl, 'P3’);
$g->endText ();

$y -=%d + 40;
$yl -= $d + 40;
$y2 -= $d + 40;
$y3 -= $d + 40;

2
$g->endGraphic ();

$pdf->pdfClose ();
Tt E N D #HaH e i i it it

In the t6.pl sample program the foreach statement controls the loop. Three curves are to be
drawn. The first is a symmetric curve. The shift parameter, $s, has the value zero. It is
drawn with the x-coordinates as they are set up before the loop statement is ever entered.
In the second and third loops the x-values of the control points P1 and P2 are each shifted
by 25 user units to the left. The variable $s, set by the foreach statement, specifies the
amount of the shift.

The program clearly demonstrates the setting of the environment (here the stroking color
and line width) before each section is drawn Isgrake function and thus being put into

the PDF. It also demonstrates that the stroking color (set bsetlmlors function with

the “s” parameter) does not influence the drawing of text. Its color is determined by the
filling color (set with the “f” parameter). Here it remains the default: black.

3.7 Scaled and Boxed Text String

This sample program demonstrates the use of a measuring function for obtaining the
length of a text string when rendered in a particular environment, i.e. font and horizontal
scale factor.

September 12, 1996 24

#H### Test t7.pl - Scaled and Boxed Text String ####H#H#HHE

BEGIN {
$PDF_LIB = $SENV{"$PDF_LIB"};
unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfopen (./t7.pdf);

$pdf->newPage (); HH#HE init. page

$x=4.25*72;
Sy =9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 24);
$g->textCenter ($x, By, 't7.pl: Scaled and Boxed Text');
$g->endText ();

$p =18;
$d = 80;
$y -= 100;

$s = 'Text horizontally normal’;
$g->beginText ($p);
$g->textCenter ($x, By, $s);
$g->endText ();

$y -= $d;
$s = 'Text horizontally compressed’;

$g->beginText ();
$g->setTextHorizScale (60);
$g->textCenter ($x, 3y, $s);
$g->endText ();

$w = $g->textWidth ($s);
$lIx = $x - $w/2;

$lly = $y - 0.2*$p;

$urx = $lIx + Sw;

$ury = $lly + $p;

September 12, 1996

25

$g->rectangle ($lIx, $lly, $urx-$lix, $ury-$lly);
$g->stroke ();

$g->setColors ('f', 'yellow);

$d = 100;
Slly -= $d;
$ury -= $d;

$s = 'Text horizontally expanded’;
$g->setTextHorizScale (130);

$w = $g->textWidth ($s);

$lIx = $x - $w/2;

$urx = $lIx + $w;

$g->rectangle ($lIx, $lly, $urx-$lix, $ury-$lly);
$g->fill ();

$g->setColors ('f', 'black);
$y -= $d;

$g->beginText ();
$g->textCenter ($x, By, $s);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
HHT TRt BN D #HH e e i i i

In this sample program, t7.pl, we show how a text string is enclosed by a drawn box and
how it is rendered on top of a colored background. The heart of the operation is the use of
the textWidth function. It returns the horizontal extent of the text string in the currently
active environment.

The execution of the two tasks is straight forward. For convenience, font point size and
text string are put into variables ($p and $s). Both are needed more than once.

Note that the parameter of thetTextHorizScalefunction is not the true scale factor (for
example, 1.3 if 30% expansion is desired) but it is the percentage of the expansion (in the
example, 130). Unfortunately, 1.3 is also a correct parameter value, resulting in a com-
pression of 0.013%.

The point size is used for the vertical extension of the box. But what remains to be deter-
mined is the vertical position of the box in relation to the printed text string. Because of
the lack of additional font parameters, we use trial and error for the fraction of the point

September 12, 1996 26

size we want to see below the baseline of the printed string. In this case it suffices to posi-
tion the lower edge of the box 20% of the point size below the center of the text (0.2*$p)
and the lower extender of the lowercase p falls still within the box.

3.8 Circles and Circular Arcs

In this sample program we use a half circle to generate a circle. In the first part of the pro-

gram, circular arcs of various angles are generated. Each is the result of only one curveto
invocation, i.e., of one Bezier segment. Note that this suffices for a half circle. In the sec-

ond part we demonstrate the generation of half circles of varying radius.

###H## Test t8.pl -- Circular Arcs and Circles ####HH##H#H#HHH
BEGIN {

$PDF_LIB = $SENV{"$PDF_LIB"},

unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ('./t8.pdf);

$pdf->newPage (); #H#AHE init. page

$x =4.25*72;
Sy =9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);
$g->textCenter ($x, $y,

't8.pl: Circular Arcs (one Bezier segment each)’);
$g->endText ();

$ax =4.25*72;
$ay = Sy - 120;

foreach $w (25, 35, 45, 90) {
@ar = &arc (100, $w);
$g->setColors ('s’, 'black’);
$g->setLinewidth (2);

$g->moveto ($ax+$ar[0], $ay+$ar[1]);
$g->curveto ($ax+$ar[2], $ay+$ar[3], $ax+$ar[4],

September 12, 1996 27

$ay+$ar[5], $ax+$ar[6], $ay+$ar[7]);
$g->stroke ();

$g->setColors (’s’, 'red’);
$g->setLinewidth (0.5);

$g->moveto ($ax+$ar[0], $ay+$ar[1]);
$g->lineto ($ax, $ay);

$g->lineto ($ax+$ar[6], $ay+$ar[7]);
$g->stroke ();

$ay -= 130;
h

$g->endGraphic ();
$pdf->newPage (); #H#AE init. page

$ax = 4.25 * 72;
$ay = $y - 72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);
$g->textCenter ($x, $y,

't8.pl: Circles (from two Bezier half circles)’);
$g->endText ();

$d = 20;
foreach $r (25, 50, 100) {
$ay -= $r;
@ci = &arc ($r, 90); ##### half circle by Bezier

$c0 = $ax+$ci[0]; #H##H# adjust coordinates
$cl = Say+$ci[1];
$c2 = Sax+$ci[2];
$c3 = $ay+$ci[3];
$c4 = Sax+$ci[4];
$c5 = $ay+$ci[5];
$c6 = $ax+$ci[6];
$c7 = $ay+$ci[7];

$g->setLinewidth (2);
$g->setColors (’s’, 'black’);

September 12, 1996

28

##HHH# move to and draw curve
$g->moveto ($c0, $cl);
$g->curveto ($c2, $c3, $c4, $c5, $c6, $c7);
$g->stroke ();

$c0 = $ax-$ci[0]; #HHHHE adjust coordinates
$cl = $ay-$ci[l];
$c2 = $ax-$ci[2];
$c3 = $ay-$ci[3];
$c4 = Sax-$ci[4];
$c5 = $ay-$ci[5];
$c6 = $ax-$ci[6];
$c7 = $ay-$ci[7];

###H# move to and draw curve
$g->moveto ($c0, $cl);
$g->curveto ($c2, $c3, $c4, $c5, $c6, $c7);
$g->stroke ();

Syl = $cl; #HHHE set for red line
$x1 = $ax - $r - $d;
$x2 = $x1 + 2*($r+$d);

$g->setLinewidth (0.5);
$g->setColors ('s’, 'red’);

$g->moveto ($x1, $yl); #####H# draw red line
$g->lineto ($x2, $y1);
$g->stroke ();

$ay -= $r + 50; #H##HH# adjust vert. pos.
%

$g->endGraphic ();
$pdf->pdfClose ();

sub arc {
$r=8_[O];
$a = (3.141593 / 180) * $_[1];

$l=($r*(4/3)* (1-cos ($a)))/sin ($a);
$x3 = $r * cos (2*$a);

$y3 = $r * sin (2*$a);

$x2 = &chop ($x3 + $I * sin (2*$a));

$y2 = &chop ($y3 - $l * cos (2*$a));

$x3 = &chop ($x3);

September 12, 1996

29

$y3 = &chop ($y3);

$x1 = &chop ($r);

$y1 = &chop ($);

$x0 = $r;

$y0 = 0;

@ret = ($x0, $y0, $x1, $y1, $x2, By2, $x3, $y3);
return @ret;

}
sub chop {

return (int ($_[0] * 1000)) / 1000;
}

RHARRHARAAARARAAAAAAR B N D HHAHHHHHHHHHHHHHHHAH A

The internal subroutine arc is the basis of all Bezier curves in the sample program. It gen-
erates part of a circular arc of given radius and given semi-angle. The arc always starts
from the x-axis upwards, with the tangent being perpendicular to the x-axis. It returns an
array of eight numbers (four points), which are the origin, the first and second control
points and the end point of the curve.

As the results show even a half circle is still reasonably well approximated by a single seg-
ment of a Bezier curve.

On the second page we use the arc routine for obtaining a half circle, or more precisely, for
obtaining the four points defining a Bezier curve approximating a half circle. The curve
itself is then drawn by the moveto and curveto invocations with these four points as
parameters. The second half circle we generate by using the obvious symmetries for the
control points.

During our computations it became apparent that some routines of the PDF-PL expect
integers or decimal numbers as input parameters. Scientific notation (as needed for suffi-
ciently small or large numbers) is not accepted. In order to avoid this problem, we use the
internal routine chop. It chops our computational results to three decimals on the right side
of the decimal point, before they are submitted as parameters to the PDF-PL routines.

3.9 The Transformation Matrix

In this sample program it is demonstrated that generally the sequence of two transforma-
tions cannot be reversed without changing the result.

###H##H## Test t9.pl -- The Transformation Matrix #####HH#HHH#
BEGIN {

$PDF_LIB = $SENV{"$PDF_LIB"},

unshift (@INC, $PDF_LIB);
}

use Pdf::File;

September 12, 1996 30

use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ('./t9.pdf);

$pdf->newPage (); #H#AE init. page

$x =4.25*72;
Sy =9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);
$g->textCenter ($x, By, 't9.pl: The Transformation Matrix’);
$g->endText ();

$x =72;
$y -=100;

$g->setColors ('f, 'red’);

$g->beginText ('Times-Roman’, 24);

$g->textLeft ($x, By, 'Sample Text BEFORE transformation!’);
$g->endText ();

$g->gsave ();

$g->ctm (1, O,

0, 1, 180, 0);
$g->ctm (0.7, 0, 0, 1

, 0, 0);
$y -= 100;
$g->setColors ('f, 'blue’);
$g->beginText ('Times-Roman’, 24);
$g->textLeft ($x, Sy,
'Sample Text AFTER translation and scaling!);
$g->endText ();
$g->grestore ();

$g->ctm (0.7, 0, 0, 1, 0, 0);
$g->ctm (1, 0, 0, 1, 180, 0);

$y -= 100;

$g->beginText ();
$g->textLeft ($x, Sy,

September 12, 1996

31

'Sample Text AFTER scaling and translation!’);
$g->endText ();

$g->endGraphic ();

$pdf->pdfClose ();
HHAHHH TR E N D S R R

In the sample program, t9.pl, we print three lines of text. The first is printed in the original
environment: red fill color and no coordinate transformations yet. We save this environ-
ment (gsave).

Now we change to the fill color blue and transform the coordinate system by two succes-
sive transformations: first a translation along the x-axis by 250 user units, then a scaling in
x-direction by a factor of 0.7. Remember the original coordinate origin is the left lower
corner of the page!

After the transformation the blue text is right shifted (the translation) by 250 user units and
somewhat compressed (the scaling). (We changed the y-coordinate so that the text strings
are not printed on top of each other. But this coordinate is not influenced at all by the
transformations.)

Now we restore the saved environmegreétore). Then we apply the same two transfor-
mations again, but in reverse order: first the translation and then the scaling. The printed
text appears in blue and is compressed similarly in x-direction as before, but it is shifted
less to the right than before.

The reason for the difference lies in the fact that the translation in the first case (translation
followed by scaling) remains 250 user units. Together with the x- coordinate of the text

positioning this results in a given starting point for the string. But in the second case the x-
axis is first scaled by 0.7, i.e. each coordinate unit is 30% shorter. The translation by 250
units is now worth only 70% of the previous translation, i.e. 175 user units. Remember,

user units remain the units of measure in the original coordinate system. Each x-unit in the
coordinate system after the transformation is now worth only 70% of a user unit. This is a
consequence of the philosophy of transformations in the PDF-PL, caused--of course--by
the philosophy in the PDF: We transform the coordinate system to the new environment
(we translate it, rotate it, scale it, skew it). But the object remains the same in terms of the
number of units it is specified in. Of course, the units may have changed their size by the
transformation.

3.10 Clipping Path
This program demonstrates how a path, here a rotated square, clips a pattern of lines.

HHHH Test t10.pl - ClipPING HHHHHEHEHEHHHEHEHHEHE
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);

September 12, 1996 32

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ('./t10.pdf);

$pdf->newPage (); #H#AHE init. page

$x =4.25*72;
Sy =9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);
$g->textCenter ($x, $y, 't10.pl: Clipping’);
$g->endText ();

$g->ctm (1, 0, 0, 1, $x, 6*72); #### shift to center of page

$d = 100;
$g->setColors ('s’, 'red’);
$g->setLinewidth (8);

$g->moveto (0, $d); #H#H#HH1 start clipping path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);

$g->lineto ($d, 0);

$g->closepath ();

$g->clip ();
$g->stroke ();

$g->setLinewidth (6);
$g->setColors ('s’, 'blue’);

$x = -$d;
$sl = $d/5;
$dy = $d/5;

for ($y = -$d-$sl; Sy<$d+$sl; $y +=$dy) {
$g->moveto ($x, $y);
$g->lineto ($x+2*$d, $y+$sl);
$g->stroke ();

September 12, 1996

33

$g->endGraphic ();

$pdf->pdfClose ();
HIH T T E N D S T T T T

In the sample program t10.pl some aspects of clipping by a user specified path are demon-
strated.

First, i.e., after printing the title of the sample page, the coordinate system is shifted to the
desired center of the clipping path, approximately to the center of the page. This is done
for user convenience: the involved coordinates become easier to compute.

Then the clipping path is defined. It starts with setting up the environment: line width of 8
points and stroking color red. Then the path along the rotated square is defined by the
moveto and lineto functions, using $d as the length of the half diagonal. Note that only
three lines are explicitly defined while the last is defined by the closepath function. Now,
before the stroking occurs the clip function is invoked, defining the path as a clipping path.
Up to this time, a square is drawn in red color with a line width of 8 point and standing on
one cornetr.

Now we must generate the pattern which is to be clipped by the currently active clipping
path.

We use a for loop to draw slightly skewed horizontal lines of linewidth 6 points and yellow
color. Care is taken to make sure that the lines cover the entire square.

Note that the yellow lines partially overlap the red square line. The clipping takes place
exactly at the clipping path which by definition is the mathematical line running along the
center of the red lines. The exact order of the rendering of color onto the page is this:

1. Fill color of the clipping path
2. Stroked lines color of the clipping path

3. Fill color of the clipped pattern

»

Stroked lines color of the clipped pattern
Not all four of these cases may actually exist. In our case only numbers 2 and 4 do.

It should be noted that all that is necessary is to remowaipheinction from the program

in order to obtain the successive drawing of the clip pattern followed by the clipped pat-
ternwithout any clipping taking place. Of course, the above stated order of color render-
ing on the output medium is unchanged.

September 12, 1996 34

3.11 Text as Clipping Path
This sample program demonstrates how some text characters clip a pattern of lines.

i Test t11.pl -- Text as Clipping Path #isHHHHHHHEHHE
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen (./t11.pdf);

$pdf->newPage (); #H#AHE init. page

$x =4.25*72;
Sy =9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);
$g->textCenter ($x, By, 't11.pl: Text as Clipping Path’);
$g->endText ();

$y = 5*72;
$g->setTextRender (5);

$g->beginText ('Times-Roman’, $p=216);
$g->textCenter ($x, By, $s="Clip’);
$g->endText ();

Sw = $g->textWidth ($s);

$g->setLinewidth (1);
$x = $x - $w/2;

$y0 = $y;

$dy = 5;

for ($y=$y0-0.3*$p; $y<$y0+1.1*$p; Py+=$dy) {
$g->moveto ($x, $y);
$g->lineto ($x+$w, y);
$g->stroke ();

September 12, 1996 35

2
$g->endGraphic ();
$pdf->pdfClose ();

RHARRHAAAAAAAAR AR B N D A

In sample program t11.pl we show the word Clip drawn in outline and filled with a hori-
zontal line pattern. Again, first the clipping path (which here is the succession of all char-
acter outlines of the word Clip) is defined and drawn. This happens in the first part of the
program (the second TMA!). The rendering mode 5 (outline the characters and define
them as clipping paths) is applied to the text string Clip.

Now the lines to be clipped are drawn. For this purpose we imagine a text string box simi-
lar to the one in sample program t7.pl. We compute the width (length) of the text string in
144 point Times-Roman font. Again we estimate that 20% of the point size is enough to
cover the descenders of the font. Thus we assure that we cover the text characters com-
pletely. The horizontal lines are drawn in a straight forward manner by the triplets (moveto
lineto stroke).

3.12 Text Blocks and Text Parameters

In this sample program we demonstrate some functions which permit printing on the out-
put medium not just one text line at a time but an entire set of lines. Furthermore, calling
these functions also requires specification of some of the text environment variables. The
influence of some of the other major text variables is also shown.

#H### Test t12.pl -- Text Blocks and Text Parameters ####
BEGIN {

$PDF_LIB = $ENV{"$PDF_LIB"};

unshift (@INC, $PDF_LIB);
}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfopen ('./t12.pdf);

$pdf->newPage (); #H#HH init. page

$x = 4.25 * 72;
$y =10 * 72;

$g = $pdf->beginGraphic ();

September 12, 1996 36

$g->beginText ('Helvetica’, 18);

$g->textCenter ($x, $y, 'Text Block and
Parameters’);
$g->endText ();

Sy = 9*72;

@tb = ("We use this same block for testing’,
'the different text parameters:’,
‘'character spacing, word spacing,’,
'leading,.....");

$dy = 110;

$xleft = 72;

$xcenter = 4.25 * 72;
$xright = 7.25 * 72;
$fn = 'Helvetica’;

$fs = 12;

$l = 14;

$g->textBlockLeft ($xleft, By, $fn, $fs, $I, @tb);

Sy -= $dy;
$g->setCharSpace (8);

$g->textBlockRight ($xright, $y, $fn, $fs, $I, @tb);
$y -= $dy;

$g->setCharSpace (0);

$g->setTextWordSpace (8);

$g->textBlockCenter ($xcenter, $y, $fn, $fs, $I, @tb);
$y -= $dy;

$g->setTextWordSpace (0);

$l = 20;

$g->textBlockLeft ($xleft, By, $fn, $fs, $I, @tb);
$y -= $dy;

$l = 14;

$g->setTextHorizScale (70);

$g->textBlockLeft ($xleft, By, $fn, $fs, $I, @tb);

September 12, 1996

37

$y -= $dy;
$g->setTextHorizScale (130);

$g->textBlockLeft ($xleft, By, $fn, $fs, $I, @tb);

$g->setTextHorizScale (100);

$g->endGraphic ();

$pdf->newPage ();

$g = $pdf->beginGraphic ();

@offset = (1.0, 0.75, 0.5, 0.25, 0);

$g->beginText ('Helvetica’, 18);

$g->textCenter (4.25*72, 10*72,

‘textBlockOffset ({@offset},)");

$g->endText ();

Py =8.5*72;

foreach $offs (@offset) {

$g->textBlockOffset ($offs, $xcenter, By, $fn, $fs, $I, @tb);

Sy -= $dy;
}

$g->endGraphic ();

$pdf->pdfClose ();

RERARARAAAAAAAAARAAAR B N D HHAHHHHHHHHHHHHHHHHHHHHHHH

In the sample program t12.pl the same array of text lines is used to demonstrate several
text block rendering functions and several text parameter setting functions. We use a stan-
dard value of 14 point for the leading parameter. The PDF default is 0, which means no
leading at all. All consecutive lines are printed at the same vertical position.

First the text block is printed using thextBlockLeft function. This function prints the
lines left adjusted starting with the first line at the specified (X, y) position. Except for font
name and font size, all text parameters are at their default values.

Then character spacing is set to 10 points and the text block is printed right adjusted, i.e.

using thetextBlockRight function.

September 12, 1996

After resetting the character space to its default value, word spacing is set to 10 points.
Now the text block is to be centered, which is done by usinge#iBlockCenter func-
tion.

After resetting the word space to its default value, the leading is set to 20 points. The lines
are now vertically space by 6 points more than in our normal case (14 points).

After resetting the leading to our standard value of 14 points the text block is printed left
adjusted first with a horizontal compression of 30% and then with a horizontal expansion
of 30%.

After resetting the horizontal scaling the text block is printed five times on the next page
demonstrating théextBlockOffset function. As horizontal reference point the center of
each line is used. The offset varies from 1 over .75, .50, and .25 to 0. It becomes apparent,
that the use of the first, third and fifth of these values is equivalent to invocations of the
functionstextBlockLeft, textBlockCenter andtextBlockRight respectively.

3.13 Colorspaces

This sample program demonstrates the use of some of the color spaces that are available in
the PDF.

#HHH Test t13.pl -- Set Color Spaces #HHH#HHHHIHHHHHHEH
BEGIN {

$PDF_LIB = $SENV{"$PDF_LIB"}

unshift (@INC, $PDF_LIB);

}

use Pdf::File;
use Pdf::Font;
use Pdf::Graphic;

my $pdf = Pdf::File->new();
$pdf->pdfOpen ('./t13.pdf);

$pdf->newPage (); #H#HH init. page

$x =4.25*72;
$y=9*72;

$g = $pdf->beginGraphic ();

$g->beginText ('Helvetica’, 18);

$g->textCenter ($x, $y, 't13.pl: Set Color Spaces’);
$g->endText ();

$tx = 50;

September 12, 1996 39

$d = 30;

$g->ctm (1, 0, 0, 1, 3*72, 8*72); #### shift to center page

$g->setColors ('f', 'DeviceRGB’, 0.2, 0.3, 0.7);

$g->moveto (0, $d); #H#HH start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);

$g->lineto ($d, 0);

$g->closepath ();

$g->fill ();

$g->beginText (15);
$g->textLeft ($tx, 0, 'DeviceRGB 0.2 0.3 0.7");
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72); ##### shift down one inch
$g->setColors ('f’, 0.7, 0.2, 0.2);

$g->moveto (0, $d); #H#H#H start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);

$g->lineto ($d, 0);

$g->closepath ();

$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, 'DeviceRGB 0.7 0.6 0.2");
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72); ##### shift down one inch
$g->setColors ('f', 'DeviceCMYK’, 0.8, 0.3, 0.2, 0.1);

$g->moveto (0, $d); #H#H#H start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, 'DeviceCMYK 0.8 0.3 0.2 0.1%);
$g->endText ();

September 12, 1996

40

$g->ctm (1, 0, 0, 1, 0, -72); ##### shift down one inch
$g->setColors ('f', 0.2, 0.3, 0.9, 0.1);

$g->moveto (0, $d); H#H#HH# start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);
$g->lineto ($d, 0);
$g->closepath ();
$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, 'DeviceCMYK 0.2 0.3 0.9 0.1");
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72); ##### shift down one inch
$g->setColors ('f', 'DeviceGray’, 0.8);

$g->moveto (0, $d); #H#HH start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);

$g->lineto ($d, 0);

$g->closepath ();

$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, 'DeviceGRAY 0.8");
$g->endText ();

$g->ctm (1, 0, 0, 1, 0, -72); ##### shift down one inch
$g->setColors ('f, 0.3);

$g->moveto (0, $d); #H#HH start path
$g->lineto (-$d, 0);

$g->lineto (0, -$d);

$g->lineto ($d, 0);

$g->closepath ();

$g->fill ();

$g->beginText ();
$g->textLeft ($tx, 0, 'DeviceGRAY 0.3");
$g->endText ();

September 12, 1996

41

$g->endGraphic ();

$pdf->pdfClose ();
HHAHHH TR E N D S R R

The sample program t13.pl shows two examples each of the three color Bpaes

RGB, DeviceCYMK andDeviceGray For each of the six examples the ctm function is
used to transform the coordinate system into the center of a square filled with color. Then
the rotated square is drawn easily.

The name of the color space need be specified only once. Then it is enough to specify only
another set of color components in order to change the color. Note, that, aside from the
first parameter (fill or stroke), a new color (set of color components between 0 and 1) must
always be specified, regardless whether a new color space has been specified or not.

The single number required for tBeviceGray color space is 1 for white and O for black.
This to me is counter intuitive!

Note that in the program currently several replacement oddt@olors function by the
forceColors function have been done in order to overcome a current bug in the PDF-PL.

4.0 The Function Reference List

This list contains those functions of the PDF-PL that | currently understand. One can open
the PDF-PL to the PDF builder to a deeper or less deep level. This current list is intended
for a top level user, the typical application oriented person who is not interested in the
intricacies of internal implementation but only in correct and successful use of the PDF-
PL to build error free PDFs.

It should be noted that most of the environment setting functions, set..., have a correspond-
ing force... function. Such force... function does exactly the same as the set... function

except that it forces immediate committing of the corresponding PDF operator (or opera-

tors) into the PDF stream. In the case of a set... function the PDF operator is not commit-
ted to the stream until it is necessary: itashed

The PDF-PL library is implemented using Perl5 which provides the concepts of Object
Oriented Programming. Therefore we list the user PDF-PL functions (methods) separated
into groups for each of the applicable object classes: File and Graphic.

4.1 “File” Methods

These are the methods of the object class File which are visible to the user (here the PDF
builder).

info (“title”, t, “author”, a, “creator”, c, “subject”, s)

Supplies values for several keywords to be saved by the internal routines in the new PDF.

September 12, 1996 42

May be invoked anywhere between th@&fOpen and pdfClose functions, but prudent
programming practice suggests that it be placed at the start or the end of the PDF generat-
ing code.

If there are more than one occurrencesnf invocation then only the last one for any
keyword will be properly saved by the internal routines.

Parameters:

Must be an even number of character strings. Each pair represents a key followed by a key
value. The parameter pairs may appear in any order and any of the pairs may be omitted.

newPage [in)

Creates a new page.

Parameters:

pnis the page number of the new page. This page must not yet have been generated.
The parameter is optional.

Default:

If there is no page number specified the new page number is the next after the most
recently created one.

Note that there must b gaps in the sequence of page numbers starting with one.
pdfClose ()

Does whatever is necessary to end the PDF body, mainly generating those PDF objects
that are still missing in the output file. Then generates the PDF Trailer and XREF Table
and writes them to the output file and closes it.

pdfOpen (fn)

Opens file fileName as the output file, generates the PDF Header, and does whatever is
necessary to start the body of the PDF.

Parameters:

fn is either a filename string or a reference to a filehandle for which the file is already
open. In the latter case opening of the file does not occur.

The parameter is required.

setPageSizew, h)

September 12, 1996 43

Sets the default size of the pages. This invocation may appear almost anywhere in the PDF
builder’s program, but prudent programming practices suggest that it be placed at the start.

Parameters:

w is the page width the page height. They are to be specified in user units.
The parameters are required.

Default:

8.5 inch by 11 inches. This is the default page size if there is no invocatietPalyeSize
at all in the user’s PDF building Perl5 program.

4.2 “Graphic” Methods

These are the methods of the object class Graphic which are visible to the user (here the
PDF builder).

addGraphic (pn)

Adds everything that is marked by that GMA (or more precisely, that PDF stream) to a
specified page. That GMA was specified by the Graphic object instance on which the
method, addGraphic, is invoked.

Parameters:

pnis the number of the affected page (see above).
The parameter is required.

beginGraphic (pn)

Initializes the beginning of a new GMA. The PDF builder is expected to begin now to
invoke functions which set the environmental variables for the GMA in the way he/she
desires as well as to draw graphic entities (lines, curves, etc.) he/she wants to render on the
current page. A list of the available functions can be found in the se¢tenslarking of

the PageandThe Current Point and Paths

A GMA must be ended by invoking tleedGraphic function.
More than one GMA may be started and ended any page.

If the page number parameter is specified it designates the page to which this new GMA is
to be appended.

If a new GMA is started the complete set of environmental variables is reset to the default
values. Exceptions are the font name and font size. The PDF-PL routines expect that at the
beginning of a TMA these two text environment variables are defined. However, once

September 12, 1996 44

defined within a GMA, they propagate up to émelGraphic function invocation. Hence,

it is necessary to specify font name and font size only at the beginning of the first TMA
within the current GMA. Later TMAs may change font name and/or font size if the builder
so desires.

Parameters:

pn is optional. If it is specified it is the number of the page to which the newly started
GMA is appended. This page must already exist.

Returns:

A reference to the new GMA. This reference is used to qualify the invocation of all
graphic marking, text marking and environment changing functions within this GMA.
This is demonstrated by all sample programs.

beginText (n, fs)

Signals the beginning of text to be put on the page and may specify the name and size of
the font to be used.

Parameters:

fn is the name of the font, for example ‘Helvetica’ or ‘Helvetica-Bold’ &id the size of
the font in printers points. Other than that it must be a positive number there is no restric-
tion on the size of the font.

Both parameters are optional. However, if one or both are not specified, the PDF builder
must make sure that at the point of this function invocation both are defined in the current
GMA. This means, at least once since the beginning of the current GMA, each of them
must have been specified obeginText, setFontor one of the text block functions.

Permissible font names in the current PDF-PL package are:

. Courier

. Helvetica

. Helvetica-Bold

. Helvetica-Oblique

. Helvetica-BoldOblique
. Times-Roman

. Times-Bold

. Times-ltalic

. Times-Boldltalic

. Symbol

. ZapfDingbat

Default:

September 12, 1996 45

None. The PDF builder must at least once set the font name and font size before text can
be put on the page.

clip ()
Makes the current path a clipping path.

This function invocation must occur within the definition of a closed path. More precisely,
it must occur after the definition of the last clipping segment and the path painting opera-
tor.

In order to determine the actual clipping area, this operator uses the nonzero winding rule.
closepath ()

Closes the currently open path in the current GMA by appending a straight line connecting
the current point with the beginning of the path.

closepathFillStroke ()

Closes the currently open path in the current GMA by appending a straight line connecting
the current point with the beginning of the path. Then strokes and fills the path using the
nonzero winding rule.

This is a succession of the closepath function followed by the fillStroke function.
ctm (pl, p2, p3, p4, tx, ty)

ctm stands forcurrent transformation matrixit transforms the current coordinate system
into a new one thereby changing the appearance of the text and graphics on the output
medium. The transformations of translation, rotation, scaling, and skewing are possible.

Parameters:

tx andty are the amounts of translation in x- and y- direction, respectively. The origin of
the new coordinate system is the potrt ty) in the old coordinate system.

pl, p2 p3, andp4 specify rotation, scaling and skewing.
A pure rotation in the x-y-plane by the angle A is specified by

pl=cosA
p2 =sin A
p3 =-sin A
p4 =cos A
x =ty =0

Rotation and translation can be combined (and their sequence does not matter) by also
specifying the amount of translation in the x- and y-directiboandty.

September 12, 1996 46

Pure scaling is specified by

pl1 = scale factor in x-direction
p4 = scale factor in y-direction
p2= p3= tx = ty =0

This transforms the coordinates so that one unit in x- direction of the new coordinate sys-
tem is the same size p$ units in the previous coordinate system, and similarly for the y-
direction. In other words ipl is greater than one the text or graphics to be rendered are
now greater by the factql in x-direction than they were in the old coordinate system.
Similarly, if plis smaller than one, the rendered text or graphics will become smaller.

Pure skewing is accomplished by the following choice of parameters

p2 =tan A
p3=tan B
pl= p4=1
x = ty =0

This skews the x-axis of the new coordinate system by the angle A (measured clockwise
from the x-direction) and the y- axis by the angle B (measured counter clockwise from the
y- direction).

Transformations may be cascaded, i.e., one may be executed after another. However, it
must be noted that the results may be different, if the sequence of the transformations is
changed. As stated before, rotation and translation are independent. Their sequence does
not matter. But, for example scaling the x-direction followed by a translation is not the
same as first translating the x-axis (sliding it in is own direction) and then performing the
scaling. See the sample program, t9lple Transformation Matrix

Default:

No transformation.

curveto (x1, y1, x2, y2, x3, y3)

Adds a Bezier curve to the current path definition and moves the current point.
Parameters:

Points &1, y1) and &2, y2) are the control points. Poit3 y3) is the end point of the
curve. The point coordinates are in user units. All six parameters are required. The point
(x3, yJ) is the new current point.

endpath ()
Ends the current path without closing it.

endGraphic ()

September 12, 1996 47

Ends the range of a new GMA. This function must be invoked before a new page may be
started again.

endText ()

Ends a TMA for positioning text on the page. This function must be invoked before
graphic marking functions may be invoked again within the encompassing GMA.

eoclip ()
Makes the current path a clipping path.

This function invocation must occur within the definition of a closed path. More precisely,
it must occur after the definition of the last clipping segment and the path painting opera-
tor.

In order to determine the actual clipping area, this operator uses the even-odd rule.
evenOddFill ()

Fills the most recently ended path following the even-odd rule to determine which regions
of the path to fill with the current filling color. For an explanation of the rule see the sec-
tion Path Painting Operatorgn the PDF Manual.

evenOddFillStroke ()

Fills and strokes the most recently ended path following the even-odd rule to determine
which regions of the path to fill with the current filling color. For an explanation of the rule
see the sectioRath Painting Operators the PDF Manual.

This is a succession of teeenOddFill function followed by thestroke function.

fill ()

Fills the most recently ended path following the nonzero winding number rule to deter-
mine which regions of the path to fill with the current filling color. For an explanation of
the rule see the secti®ath Painting Operatorg the PDF Manual.

fillStroke ()

Fills and strokes the most recently ended path following the nonzero winding number rule
to determine which regions of the path to fill with the current filling color. For an explana-
tion of the rule see the secti®ath Painting Operatorgh the PDF Manual.

This is a succession of the fill function followed by the stroke function.

grestore ()

September 12, 1996 48

Restores the most recently saved environment. This function must be invoked within a
GMA, but not within an enclosed TMA. See the gsave function for a list of the restored
environment variables.

gsave ()

Saves the current environment. This function must be invoked within a GMA, but not
within an enclosed TMA.

The environment variables saved are:

. color for stroking and filling
. line width

. line cap style

. line dash pattern

. line join style

. miter limit

. font name

. font size

. current point

. current clipping paths

See the grestore function for restoring the environment.

lineto (X, y)

Draws a straight line from the current point to the point (X, y).

Parameters:

The point &, y) is the new current point. Both point coordinates are in user units.
The parameters are required.

moveto , y)

Moves the current point.

Parameters:

The point &, y) is the new current point. Both point coordinates are in user units.
The parameters are required.

The default current point at the beginning of a new GMA is (0, 0), i.e. the left lower corner
of the page.

rectangle &, y, w, h)

September 12, 1996 49

Adds a rectangle to the current path definition.
Parameters:

(x,y) is the left lower point of the rectangle. w is its width and h its height. All four param-
eters must be user units. The poity] becomes the new current point.

All four parameters are required.
setCharSpace €), forceCharSpace ¢)

sets the intercharacter space in a text string.
Parameters:

c is the character-space in user units to be added between two immediatly adjacent charac-
ters within a text string.

The parameter is required.
Default: 0
setColors 6f, ¢), forceColors &f, ¢, sl, s2 s3

Used within a GMA to set a new color for drawing lines and/or filling paths. Drawing
applies to paths, lines and boxes. Filling applies to closed paths, boxes and the rendering
of text strings.

Parameters:

sfmust be one of the strings ‘s’, ‘f’, ‘sf’ or ‘fs’. An ‘s’ indicates that color is the new strok-
ing color and an é&fi that it is also the new filling color.

¢ may be one of the colors predefined in the PDF-PL:

. black

. blue

. darkblue
y gray

. green

. red

. white

. yellow

If cis not one of the predefined colors is must specify a color space:

. ‘DeviceRGB’
. ‘DeviceCYMK’

September 12, 1996 50

. ‘DeviceGray’

In this casec must be followed by a color specification. For the color space DeviceRGB
three components are required which specify the mix of red, green and blue. These three
numberssl, s2 s3 must be between 0 and 1 each. For DeviceCYMK there must be four
component values for cyan, magenta, yellow and black, again each between 0 and (1);. For
DeviceGray there need be only one parameter, again between 0 and 1.

The first parameter is required. The others must be specified as stated.
Default:

Both fill and stroke default colors are black.

setDashPattern &, p), forceDashPattern &, p)

Specifies that all lines drawn are to be of a particular kind. For details and examples con-
sult the sectiohine Dash Patternn the PDF Manual or see the text following the second
sample prograrhine Samples

It should be noted that the drawing of the dashes otherwise follows the currently valid
environmental variables. The width is determined by the current line width. Ends of
dashes are treated with the current line cap style. Corners within dashes are treated with
the current line join style.

Parameters:

a must be an array of numbers. These numbers specify, in user units, the length of succes-
sive strokes and gaps along a stroked path or line. If this number is odd, the last specified
dash length is also the length of the last gap.

p must be a single number. It specifies the phase with which the dash pattern starts the
path, measured in user units.

The parameters are required.
Default:

The default dash pattern is a solid line which can be specified by an empty array and a
phase value of 0.

setFlatnessf), forceFlatness f)

Sets a limit for the maximum permitted distance between a mathematical correct path and
an approximation constructed from straight line segments. It is device dependent since it is
measured in device pixels.

Parameters:

September 12, 1996 51

f is the distance in device pixels which is still tolerable. It must be 0 and 100 inclusive.
The parameter is required.

Default:

0, which means that the device flatness is to be used.

setFont ¢n, fs), forceFont (n, fs)

Sets a new font name and/or font size. This permits changing the font parameters between
text invocations within a TMA.

Parameters:

fn is the name of the font, for example ‘Helvetica’ or ‘Helvetica-Bold’ &d the size of
the font in printers points. Other than that it must be a positive number there is no restric-
tion on the size.

At least one of the parameters must be specified. However, if one is not specified, the PDF
builder must make sure that at the point of this function invocation it is defined in the cur-
rent GMA. This means, at least once since the beginning of the current GMA, it must have
been specified onlaeginText function.

Permissible font names in the current PDF-PL package are:

. Courier

. Helvetica

. Helvetica-Bold

. Helvetica-Oblique

. Helvetica-BoldOblique
. Times-Roman

. Times-Bold

. Times-ltalic

. Times-Boldltalic

. Symbol

. ZapfDingbat
Default:

None. The PDF builder must at least once set the font name and font size before text can
be output on the page.

setJoinStyle §), forceJoinStyle 6)

Sets the style in which two drawn lines are joined. For details and examples consult the
sectionLine Join Stylen the PDF Manual.

September 12, 1996 52

Parameters:

s must be 0, 1 or 2. These values specify miter joins, round joins or bevel joins respec-
tively.

The parameter is required.

Default:

0, i.e. miter join.

setLineCapStyle €), forceLineCapStyle €)

Sets the style in which a drawn line is terminated. For details and examples consult the
sectionLine Cap Stylen the PDF Manual.

Parameters:

c must be 0, 1 or 2. These values specify butt end caps, round end caps and square end
caps resp.

The parameter is required.

Default:

0, i.e. butt end capping of the lines.

setLinewidth (w), forceLinewidth (w)

Specifies a new width for lines to be drawn (for example, by lineto or curveto).
Parameters:

w is the new line width specified in user units. The parameter is required.
setMiterLimit (m), forceMiterLimit (m)

When miter join style is in effect, the miter limit determines whether the miter join (miter
length) extends too far away from the point of joining the two lines. Then a bevel join is
substituted. For a detailed figure consult the sedfier Limit in the PDF Manual.

Parameters:

mis the limiting ratio of the miter length to the line width. Its value must be greater than or
equal to 1. Joins for which this value is exceeded will be converted to bevel joins.

The parameter is required.

Default: 10

September 12, 1996 53

setTextHorizScale §f), forceTextHorizScale éf)
Changes the horizontal extent of text strings by the specified amount.
Parameters:

sfis the scale factor. It is specified as a percentage without the percent sign. A value of 100
means no scaling at all. It is applied to any text string before it is rendered on the output
medium.

The parameter is required.

Default:

100, i.e. no scaling at all.

setTextLeading (), forceTextLeading ()

Sets the vertical distance of successive text baselines in a block of text.

Watch out for this, PDF builders! Using the leading default, which is 0, results in succes-
sive lines to be printed on top of each other. To the best of my knowledge, leading is the
distance betweetext boxesor rather in the old world of leaden type slugs, the distance
between the type slugs of successive text lines. However, in the PDF-PL (and in the PDF
world), leading is the distance between successive text lines, commonly called line spac-
ing. The height (y-extent) of a type slug was equal to the point size. As a consequence the
line spacing is equal to the point size plus the leading.

Parameters:

| is the vertical distance of successive baselines in a block of text.
The parameter is required.

Default: 0

setTextRender (), forceTextRender ()

Set the rendering of text on the output medium.

Parameters:

r may have one of 8 values:

0 fill text with current fill color

1 stroke text with current stroke color

2 fill and stroke text with the respective colors

September 12, 1996 54

3 do nothing, text is invisible

4 fill text and add it to the clipping path

5 stroke text and add it to the clipping path

6 fill and stroke text and add it to the clipping path
7 add text to the clipping path

Default:

0, fill text with current fill color.

setTextRise (), forceTextRise ()

Shifts the baseline on which the text rests up or down thus permitting superscripting or
subscripting.

Parameters:

r is the amount of vertical shift (rise) specified in user units. A positive parameter results
in an up shift, a negative parameter value results in a down shift.

The parameter is required.
Default: O
setTextWordSpace), forceTextWordSpace)

Sets the space between adjacent words in a text string. Note that the blank character is
considered a character in the PDF. Hence a word space of zero means the actually visible
word space is only the width of the blank character. Hence, the default word space can be
zero without causing troubles similar to the text leading.

Parameters:

w is the word space in user units.
The parameter is required.
Default: 0

textBlockCenter (x, y, fn, fs, |, ta)

Prints an array of text lines starting with the first line centered at the point (x, y). Subse-
guent lines are printed below, each one centered at (X, y) but the y position shifted down-
ward by the leading |.

Parameters:

September 12, 1996 55

(%, y) is the center point of the first ling andfs are the font name and font sités the
leading,ta is the array of text lines. The valuey, andl must be specified in user units.

All parameters are required.
textBlockLeft (x, y, fn, fs, |, ta)

Prints an array of text lines starting with the first line left adjusted at the gpint Sub-
sequent lines are printed below, each one left adjusted tl{ut the y position shifted
downward by the leadinig

Parameters:

(%, y) is the starting point of the first linBy andfs are the font name and font sités the
leading,ta is the array of text lines. The values, andl must be specified in user units.

All parameters are required.
textBlockOffset (0, X, y, fn, fs, |, ta)

Prints an array of text lines, each line horizontally adjusted by a specified fraction as
described below.

Parameters:

o0 is the offset. It must be a value between 0 and 1 inclusive. Each line is positioned such
that theo fraction of it is positioned to the left of the poimt), while y is vertically
adjusted by the leading I. Hence, the invocatiote&tBlockCenter (x...) is identical to

the invocation ofextBlockOffset (0.5,x....).

fn andfs are the font name and font sites the leading. The valuesy, andl must be
specified in user units. ta is the array of text lines.

All parameters are required.
textBlockRight (x, y, fn, fs, |, ta)

Prints an array of text lines starting with the first line right adjusted at the pofht$ub-
sequent lines are printed below, each one right adjustedyatbut they position shifted
downward by the leading

Parameters:

(x, y) is the starting point of the first linfy andfs are the font name and font sikés the
leading. The values y, andl must be specified in user units.is the array of text lines.

All parameters are required.

textCenter (x, y, t)

September 12, 1996 56

Positions the text string centered using current font and font size.
Parameters:

The point &, y) specifies the position of the center of the text string. The valaesy
must be in user units.

t is the text string to be printed.

The parameters are required.

textLeft (x,y, t)

Positions the text string left adjusted using current font and font size.
Parameters:

The point &, y) specifies the position of the left end of the text string. The valaesly
must be in user units.

t is the text string to be printed.

The parameters are required.

textRight (x, y, t)

Positions the text string right adjusted using current font and font size.
Parameters:

The point &, y) specifies the position of the right end of the text string. The valardy
must be in user units.

t is the text string to be printed.

The parameters are required.

vCurveto (x1, y1, x2, y2)

Adds a Bezier curve to the current path definition and moves the current point.
Parameters:

The current point is the first control point1(y1) is the second control point and®(y?2)
is the end point of the curve. The point coordinates are in user units.

All four parameters are required.

(x2, y2) is the new current point.

September 12, 1996

57

yCurveto (x1, y1, x2, y2)
Adds a Bezier curve to the current path definition and moves the current point.
Parameters

Point 1, y1) is a control point and poink2, y2) is the second control point as well as the
end point of the curve. The point coordinates are in user units.

All four parameters are required.
(x2, y2) is the new current point.
textWidth (s)

Measures the width (i.e. the horizontal width or the length) of a text string. Uses the font
name and size from the currently active environment.

Parameters:
sis the text string for which the width is to be measured.
Returns:

The width of the text string in user units.

5.0 Known Problems

The functionggsaveandgrestore are not working reliably. The execution of the samples
t4.pl and t9.pl (both using thgsaveandgrestore functions) gave rise to error messages
yet the results could still be displayed and printed.

You may find that theetDashPatternfunction may not respond correctly to a default
phase value (see the second dashed line on page 2 of the example inLssetidam-
ples) This is an Acrobat Exchange 2 bug which will be fixed in Exchange 3. But the
PDF-PL generates a correct PDF operator and parameters.

September 12, 1996 58

	1.0 Introduction
	2.0 Building the PDF
	2.1 PDF Top Level Structure
	2.2 The Marking of the Page
	2.3 The Current Point and Paths
	2.4 Clipping
	2.5 User Units and Coordinate System
	2.6 Error Checking

	3.0 Sample Programs
	3.1 The Simplest PDF (The “Hello World!” Case)
	3.2 Two Pages
	3.3 Repeated GMAs
	3.4 Save and Restore the GMA Environment
	3.5 Line Samples
	3.6 Bezier Curves
	3.7 Scaled and Boxed Text String
	3.8 Circles and Circular Arcs
	3.9 The Transformation Matrix
	3.10 Clipping Path
	3.11 Text as Clipping Path
	3.12 Text Blocks and Text Parameters
	3.13 Colorspaces

	4.0 The Function Reference List
	4.1 “File” Methods
	4.2 “Graphic” Methods

	5.0 Known Problems

