
Strings
Steven R. Bagley

Recap

• Programs are a series of statements

• Defined in functions

• Functions, loops and conditionals can alter
program flow

• Data stored in variables or arrays

• Or pointed at by pointers

Strings

• C Strings are sequence of chars
terminated by a null char ‘\0’

• Accessed by a pointer to the first character

• Create space for a new string by using a
char array

• Access the characters either with pointers
or as an array

There are other ways -- we’ll see that later

Defining Strings

• Two ways of defining a string in C

• As a pointer to the string 
char *str = “Hello World”;

• As an array initialised with the string 
char str[] = “Hello World”;

• These are different — can modify the
contents of the latter, but not the former

First defines a pointer to a string in the program code — unchangeable…
Go demo the difference…

String Processing

• Most string routines will iterate over every
character in the string

• Using a loop

• And stop when they hit the \0 character

• Classic example would be a string length
routine

Strings as Arrays

• Need a string and an integer to hold the
offset 
char *string = “Hello World”;  
int i=0;

• Loop conditional 
while(string[i] != ‘\0’)

• Don’t forget to increment i  
i++; or i = i + 1;

Go implement strlen…

Strings using Pointers

• Need a string 
char *string = “Hello World”;

• Also a pointer to a character 
char *p = string;

• Loop conditional 
while(*p != ‘\0’)

• Advance pointer to next character 
p = p + 1; or p++;

Set pointer to point to the first character

Speed Daemon

• Both methods will have the same effect

• But the array version has to do twice as
much work

• Array access has to take the pointer to the
base of the array and add the offset

• As well as incrementing i

• In the pointer version, we just move the
pointer on by one

And in most cases, the CPU can automatically increment the pointer for us

Caesar Cipher

• Write an encryption program that uses the
Caesar Cipher

• Caesar Cipher rotates each letter along the
alphabet by a certain number

• So using the classic rotate 13, A becomes N,
B becomes O etc.

• Wraps around so M is Z, N is A

Program Logic

• Visit every character in the string

• If it is a letter add 13 to its ASCII value

• If greater than ‘Z’ wrap it back to ‘A’

• Store value back in string at same position

• Print it out

• Can use modular arithmetic to wrap things

Go program it up

Reading a string

• Could use scanf() to read text

• But this only reads one word

• There’s another routine gets() which
returns a complete line 

gets

• char *gets(char *s)  
Takes a pointer to a string to read the line
into

• Must be enough space to store the string; 
gets() won’t check, that’s your job

• Returns a pointer to the buffer, or NULL if
an end of file occurs

• Newline character is not returned

gets

• However, there’s a problem with gets()

• It doesn’t check how large the buffer is

• If the user types in too many characters it
will overflow the buffer

• Overwriting valid memory and causing the
program to crash…

Getting a line

• char *fgets(char *s, int n,  
 FILE *stream)  
Takes a pointer to a string to read the line
into

• Reads at most n characters

• Need to tell it what stream to read from,
we use stdin

• Will return the newline character

if it gets to the end of the line...

NULL pointers

• The NULL pointer is used to say this
doesn’t point at anything

• If you try and access it, you’ll almost
certainly crash the machine

• But you can always test for it first

• To speed things up, NULL is defined to be 0

• We’ll see this in more detail later…

Case-sensitivity

• Need to handle upper case and lower case
separately

• Currently handle it manually

• Can use isupper() and islower()
instead

• Then adjust accordingly

• But we can optimise our routine…

Changing the rotation

• Currently, we have a fixed rotation of 13

• Be nice if we could specify this

• One way to do this would be to allow us to
put the rotation value on the command line

• So we pass it to the program as we call it

Command Line

• C passes the command line argument to
main as an array of strings

• Generally, called argv

• Also passes a count of how many
arguments there are, generally called argc

• First argument is always the name of the
program

argv - argument vector

Command Line

• Can read the rotation value from here

• Provide a default of 13 if not specified
(check how many arguments passed using
argc)

• But need to convert string to an int

• Can use scanf, well, a special version for
strings, sscanf

sscanf()

• Works identically to the normal scanf

• Reads characters from a string rather than
the stdin

• First parameter is the string to read the
characters from

int sscanf(char *s, char *format, …);

Character Type

• C library provides a variety of routines for
testing characters

• All of the form int is…(int c)

• Returns true (non-zero) or false (zero)
depending whether the character is or not

• Must #include <ctype.h>

Function Tests

isascii(int c) Between 0 and 127

isalpha(int c) is it an alphabetic character?

isdigit(int c) is it a digit? ‘0-9’

isnumber(int c) Any number character (depends
on location)

isalnum(int c) Is it a digit or alphabetic chracter?

ishexnumber(int c) Is it a hex digit ‘0-9A-F’

Some of the more common examples

Function Tests

islower(int c) Is it lower case?

isupper(int c) is it upper case?

isspace(int c) is it a space character? Including
tabs, newlines etc.

isprint(int c) is the character printable?

int tolower(int c) Converts character to lowercase
if uppercase

int toupper(int c) Converts character to uppercase
if lowercase

Some of the more common examples

Optimized Implementation

• Often, these routines are written in an
optimized fashion

• Don’t use repeated comparisons

• An array of longs – one for each character

• Each bit of long means something if set

• Bit 8 is alphabetic character, Bit 12 is lower
case, etc…

Optimized Implementation

• Bit 8 is alphabetic character

• Bit 10 is digit character

• Bit 12 is lower case

• Bit 15 is upper case and so on for other
bits

• So character ‘A’ would have bit 8, and bit
15 set (at least)

Optimized Implementation

• Can test whether a bit is set using a
bitwise-AND (the & operator in C)

• So __runetype[‘A’+1] & 0x00008000L
would test if it is upper-case

• If the bit is set this will return, 0x8000L a
non-zero value, so true

• If not, returns zero so false

+1 is so you can cope with EOF which is -1
Try being that clever in Java...

Lookup Table

• This is called a ‘Lookup Table’

• Rather than calculating the result, it looks it
up in the array

• Very common practice

• Sometimes used to get approximations for
complex calculations

• Trading memory space for time

(e.g. sine/cosine in games, colour transformations etc)

Common String Routines

• Some string routines are used a lot

• String Length routine

• Copy a string

• Concatenate one string onto another

• Find the first occurrence of a character in a
string

See implementation of these

Pointers into Strings

• Often use pointers to access the individual
characters in a string

• This works very effectively

• Can also use it to ‘chop’ strings in half by
manipulating the pointer that is passed to
string routines

• Or the position of the null terminator

Printing a String

• Consider a function that prints a string

• Take a pointer to the first character

• Use the * operator to fetch the character

• If ‘\0’ then end

• Use putchar() to output each character

• And loop

Go write it...

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

Moving Pointers

• Routine prints from the first character

• Since it is given a pointer to the first
character

• But if we give it a pointer to the sixth
character (string + 6)

• It will start printing from the sixth
character

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

string H e l l o W o r l d \0

p

void putstring(char *string)
{
 char *p = string;

 while(*p != ‘\0’)
 {
 putchar(*p++);
 }
}

Common String Routines

• Some string routines are used a lot

• String Length routine

• Copy a string

• Concatenate one string onto another

• Find the first occurrence of a character
in a string

See implementation of these

String Length

• Already saw this last lecture

• Step over every character

• Adding one to a counter

• When we hit the null character, we stop

• Counter contains the number of characters

Again though we only count the number of characters from the pointer passed to the routine

String Copy

• Easy to do

• One pointer points at the source string

• Other points at the destination

• Copy value from source pointer to
destination pointer

• Till we reach null character

string H e l l o W o r l d \0

string

string H e l l o W o r l d \0

string

p

string H e l l o W o r l d \0

string

p

string H e l l o W o r l d \0

q

string H

p

string H e l l o W o r l d \0

q

string H

p

string H e l l o W o r l d \0

q

string H e

p

string H e l l o W o r l d \0

q

string H e

p

string H e l l o W o r l d \0

q

string H e l

p

string H e l l o W o r l d \0

q

string H e l l

p

string H e l l o W o r l d \0

q

string H e l l o

p

string H e l l o W o r l d \0

q

string H e l l o W o r l d \0

p

string H e l l o W o r l d \0

q

String Copy

• Again, can copy from anywhere in the string

• Or to anywhere in the destination string

• If we manipulate the pointers

• If we pointer to the null terminator, we can
concatenate two strings together

string W o r l d \0

string H e l l o \0 ? ? ? ? ? ?

string W o r l d \0

string H e l l o \0 ? ? ? ? ? ?

p

string W o r l d \0

string H e l l o \0 ? ? ? ? ? ?

p

string W o r l d \0

q

string H e l l o ? ? ? ? ? ?

p

string W o r l d \0

q

string H e l l o ? ? ? ? ? ?

p

string W o r l d \0

q

string H e l l o W ? ? ? ? ?

p

string W o r l d \0

q

string H e l l o W o ? ? ? ?

p

string W o r l d \0

q

string H e l l o W o ? ? ? ?

p

string W o r l d \0

q

string H e l l o W o r ? ? ?

p

string W o r l d \0

q

string H e l l o W o r l ? ?

p

string W o r l d \0

q

string H e l l o W o r l d ?

p

string W o r l d \0

q

string H e l l o W o r l d \0

p

string W o r l d \0

q

String Concatenation

• How do we find the null?

• Could use strlen() and add it onto the
pointer

• But we could just advance the pointer in
our function 
while(*p != 0)  
 p++;

Function Effect

strlen(char *s) Returns the length of string s.

strcpy(char *s1,
char *s2)

Copy the string s2 into s1.
Returns s1.

strcat(char *s1,
char *s2)

Concatenates s2 onto s1.
Doesn’t check for enough room.

strcmp(char *s1,
char *s2)

Compares s1 to s2.

stpcpy(char *s1,
char *s2)

As strcpy, but returns pointer
to null character

sprintf(char *s,
char *format, …)

As printf, but output written
into string s

Standard C library routines you can use...
Don’t let the strings overlap...
stpcpy isn’t ANSI standard iirc

strcmp

• Comapres two strings 
int strcmp(char *s1, char *s2);

• Returns 0 if the two strings are equal

• Returns <0 if s1 comes before s2
lexicographically

• Returns >0 if s1 comes after s2
lexicographically

